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The non-equilibrium statistical fracture theory has been used to study the statistical aspects of 
fatigue fracture of fibre-reinforced epoxy composites. An equation for the evolution of 
microcracks has been established and the general behaviour of nucleation and growth of 
microcracks discussed. Subsequently, the distribution function of crack density, the fracture 
probability, the reliability and the S-N relation for the composites have been derived. The 
theoretical results obtained coincide qualitatively with experiments. 

1. I n t r o d u c t i o n  
Much theoretical and experimental work has been 
performed recently on the statistical nature of the 
fatigue fracture of composites [1-3,]. In general, these 
studies are mostly phenomenological and only in 
a few cases has the statistical nature of one problem in 
the fatigue of composites been studied, for example, 
the statistical nature of fatigue life or fatigue strength. 
By fitting with experimental data, many investigators 
have proposed two functions to describe the distribu- 
tion of fatigue life and fatigue strength of composites: 
the Weibull distribution function and the log-normal 
distribution function [3]. However, the statistical na- 
ture of different problems in the fatigue of composites 
reflects the different aspects of the macroscopic beha- 
viour of the evolution of microstructure in the com- 
posites. Therefore, the statistical aspects of composites 
in fatigue, on the one hand, are determined by the 
evolution behaviour of microcracks, and on the other 
hand, should correlate with each other in some way. 

In the present work, the non-equilibrium statistical 
fracture theory [4] has been used to study the statist- 
ical aspects of fatigue fracture of fibre-reinforced 
epoxy composites on a unified physical model: the 
stochastic model of crack growth. An equation for the 
evolution of a fatigue crack has been established. The 
experimental law for the nucleation and growth of 
fatigue cracks in the composites is discussed and the 
distribution function of crack density, the fracture 
probability, the reliability and the S - N  relation for the 
composites have subsequently been derived. 

2. Physical aspects and the 
evolution equation 

Experiments show that the process of fatigue fracture 
of a composite is a process in which microcracks 
nucleate, then grow continuously in the composite 
under the action of cyclic stress; eventually one of the 

cracks propagates at a high rate, causing catastrophic 
failure of the composite. The growth rate of fatigue 
cracks, cN, is typically described by [5-] 

dc 
~N - - B f ~ ( c )  ( 1 )  

dN 

where c is the crack length, N is the number of cycles 
of applied cyclic stress, B is a constant depending on 
the material characteristics, the applied cyclic stress, 
the direction of crack growth, temperature and moist- 
ure, 13(c) is a function of crack length. The conven- 
tional approach to predict fatigue fracture is to inte- 
grate Equation 1 to obtain the lifetime of materials 
[6-]. However, as is well known, owing to the in- 
homogeneity of defects and compositions in real ma- 
terials, their microstructure is always inhomogeneous. 
This structural inhomogeneity leads to a fluctuation in 
the microcrack growth rate and the statistical nature 
of the fatigue law. The fluctuation of the crack growth 
rate is stochastic and independent of the crack growth 
history. Hence the conventional approach is inad- 
equate, because it neglects the crack statistics and only 
considers growth of a single crack, and the statistical 
approach must be employed. When the stochasticity 
of crack growth is considered, Equation 1 must be 
a stochastic equation. Consequently, the crack length, 
c, is a random variable and B is a random parameter. 
For convenience in handling, we regard the 
microstructure of a material as an average structure 
background being superimposed by inhomogeneous 
fluctuation, owing to all kinds of inhomogeneity. In 
this case, the random parameter, B, changes to 
B + f (N) ,  wheref(N) is a fluctuation function, so that 
the crack growth rate has the following form 

= B ~(c) + ~(c) f (N)  (2) 

where B~(c) is the transport growth rate which is 
determined by the average structure background and 
the applied cyclic stress, [3(c)f(N) is the fluctuation 
growth rate which is determined by inhomogeneous 
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fluctuation of the material structure and the applied 
cyclic stress. For the convenience of calculation, we 
suppose the process of crack growth to be a Markov 
process and the fluctuation funct ionf(N)  to obey the 
Gaussian distribution which satisfies 

( f ( N )  ) = 0 

( f ( N ) f ( N ' ) )  = D6(N -- N') (3) 

where 5 is the Dirac function and D is the fluctuation 
growth coefficient. According to stochastic theory, the 
Fokker-Planck equation, which is equivalent to 
Equation l, is [7] 

Op(co,cN) 

~N 
~ f [  D ~[3(c)] , . , )  

Oc ,L_B~(c)+s fi(C)~c-c JPtC~ )~ 

D 8 2 
+ ~ c  2 {~2(c)p(co, c, N)} (4) 

where p(co, c, N)dc is the probability that a crack 
grows from the initial length, Co, to the length between 
c and c + dc under the action of cyclic stress for 
N cycles. Similarly, when a large number of cracks is 
considered, the evolution equation of fatigue cracks is 
established. 

 M(c, N) 
~N {E } Bf (c) + M(c,N) 

ec 

D 8 2 
+ Uc N)} 

+ q(N)5(c -- Co) (5) 

where M(c, N)dc is the density of cracks evolving in 
the length between c and c + dc under the action of 
cyclic stress for N cycles, q(N) is the nucleation rate of 
microcracks. Considering that there is no crack in the 
material at time zero and no crack with infinite length 
exists in materials, we can determine the initial and 
boundary conditions as follows. 

M ( c , N  = O) = O, M ( c - ~  ~ , N )  = 0 (6) 

From Equation 5 it can be seen that the rate of change 
of the distribution function of the crack density is 
determined by the transport growth rate, the fluctu- 
ation growth rate and the nucleation rate. If 
B, ~(c) q(N) and D are known, the distribution func- 
tion of crack density can be obtained by solving Equa- 
tions 5 and 6. 

3. Nucleation rate, growth rate and 
f luctuat ion growth coeff icient  

3.1. Nucleation rate 
For the fibre reinforced epoxy composites, the fatigue 
cracks mostly nucleate at the interfaces between the 
fibres and the matrix by debonding [8]. Compared 
with the case of metals, a much smaller part of the 
fatigue life is spent in crack nucleation in composites. 
Hence, for simplicity, here we adopt the phenom- 
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enological treatment rather than discuss the micro- 
mechanism of crack nucleation. 

We define M0 as the average density of latent nuclei 
of cracks and a as the probability for such a nucleus to 
form a crack, a is dependent on materials character- 
istics, the applied cyclic stress, and crack orientation. 
We assume that cracks do not nucleate at locations 
where cracks have formed. Then we obtain the differ- 
ential equation for crack density function, M(N),  as 
follows 

dM(N)  
q(N) - dN - c~[M0 - M(N) ]  (7) 

Considering that M ( N  = 0 ) =  0, we obtain the nu- 
cleation rate of cracks as 

q(N) = a M o e x p ( -  0~N) (8) 

3.2. G r o w t h  rate 
Many experiments show that for many composites the 
fatigue crack growth rate can be described by the 
Paris formula [9-11] 

dc 
dN - A(AK)"(m cycle-1), AK = ~a Yc 1/2 M P a m  1/2) 

(9a) 

zs the stress where zXK is the stress intensity range, ~a 
amplitude, and Y is a geometric factor; A and n are 
material constants depending on material character- 
istics (such as fibre orientation, stress state, crack 
orientation and environment), For  the crack propaga- 
tion in Mode II loading by delamination, starting 
from the damage zone in the outer layers of the speci- 
men and propagating towards the ends of the uni- 
directional E glass fibre/epoxy specimen in a bending 
experiment with the cyclic load perpendicular to the 
fibre orientation, n = 9 and A = 1.6 x 10-12 [9]. In 
comparison with Equation 1, Equation 9a can be 
rewritten in another form 

where 

dc 
dN = B~J(c) (9b) 

B = Y)",  13(c) = c "/2 (10) 

3.3. F luc tua t ion  g r o w t h  coefficient 
The fluctuation growth coefficient has been derived 
theoretically [4]. For the composites discussed here, 
we have deduced 

D = B 2 r l  2 = A2((yaY)Znyl 2 (11) 

where rl is a dimensionless constant, which represents 
the effect of the fluctuations of material and circum- 
stantial parameters included in A and n on the fluctu- 
ation of the crack growth rate. 

4. Distribution function of crack density 
Substituting Equations 8, 10 and l l into Equation 
5 we obtain the distribution function of crack density 



M(c, N) dc = q(N') 
[ 2rcD( N-N')C"] 1/2 

xexp - n - ~  c~-1 c~-1 

B(N - -  N') 

(12) 

and the probability of finding the crack length be- 
tween c and c + dc at N cycles 

M(c, N)de 
p(c, N)dc = .~ 

j M(c, N)dc 
0 

fo ~ e-~N' = 1 - -e  -~N [2rtV(N - -  N')cn]  1/2 

xexp - ~ c2-1 c2-1 

- B ( N - N ' ) ] 2 / 2 D ( N  - N')}dN'dc 

(13) 

Obviously it is normalized to ~o p(c, N)dc = 1. From 
the above two equations we can see that the distribu- 
tion function of crack density, M(c, N), and the prob- 
ability of density function of microcracks, p(c, N), are 
determined by the microscopic behaviour of nuclea- 
tion and growth of fatigue cracks, which are repre- 
sented by q(N), B, 13(c) and D. 

For the sake of simplicity of analytical derivation 
we adopt the following approximate form of p(c, N) 

1 

p(c, N)dc - (2rcD Ncn)l/2 

1 

Ln- 2\c~-I 
(14) 

This can be converted to the probability of find- 
ing crack length c in the cycle number interval 
(N, N +dN) ,  p(N, c)dN [4] 

B 
p(N,c)dN - tz uJ~)'"~'"l/2 

1 1 )_BNJa /2DN}dN 
x e x p { - [ ~ -  2 (c~--t C~-1 

05) 

5. Fracture probability and reliability 
As discussed in Section 2, when cracks grow to a defin- 
ite length under the action of cyclic stress, one of them 
propagates at a higher rate, causing catastrophic fail- 
ure of material. However, for composites the fracture 
criterion has not been well defined. Hence here we 
only suppose that there exists a critical length, cr, 
beyond which a crack may propagate in an unstable 
manner. 

From Equation 15 we can determine the probabil- 
ity of finding a crack which loses its stability under the 
action of cyclic stress for cycles between N and 
N + d N  

B 

p(N, cf)dN - (2rcD N)l/2 

) 1 - BN 2DN dN 
C'~- 1 

(16) 

According to the principle of minimum strength, the 
fatigue fracture probability, P f ,  of the composite under 
the action of cyclic stress for cycles between 0 and N is 

Efo 1 Pf(N) = 1 -  1 -  p(N, cf)dN 

~ _ l - e x p [ - M l f ~ p ( N ,  cf)dN 1 (17) 

where M1 = M(N)V is the total number of cracks, 
V is the volume of the material. The approximate 
expression on the right-hand side of Equation 17 
comes from assuming that ~g p(N, c) dN ~ 1. Because 
~op(N,c)dN=l, obviously P f ( N = 0 ) = 0  and 
Pf(N ~ oo ) = 1. The fracture probability, W~, of the 
material under the action of cyclic stress with ampli- 
tude era for cycles between N and N + d N  is 

dPf (g)  Wf(N)dN -- dN 
dN 

=M1 1 -  p(N, cf)dN p(N, cf)dN 

I fo -~Mlexp - M1 p(N, cf)dN p(N, cf)dN (18) 

Similarly, from Equation 14 we can also obtain the 
probability of finding a crack losing its stability under 
the action of cyclic stress with amplitude between 
er a and era + der, for N cycles, P(era, N)dera 

p(Oa, N)dera = p(cf, N) dd~ " d e r a  

- (2~DNCn)I/2exp - - n 2 (? 1) 
X n 

C 1 C ~ -  1 
f 

- B N J 2 / 2 D N }  dcf (19) 

Then the fracture probability of the composite under 
the action of cyclic stress with amplitude between 
0 and era for N cycles is 

P f ( e r a )  = 1 --  1 - -  P(era, N)dera  

I ;o a ] - 1 - exp - M1 P(era, N)dera (20) 

The approximate expression on the right-hand 
side of Equation 20 comes from assuming that 
foap(era, N)dera~ 1. Because ~op(era, N)dera= 1, 
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obviously Pf(cy~ = 0) = 0 and P f ( r Y a  ~ oO ) = 1. The 
corresponding fracture probability density function is 

dPf(O'a) 
Wf (O'a) dcy a -- d u  a 

dc~a 

= M 1  1 -  p(G,, N) dcy~ p(CYa, N) dcy, 

"~MlexpI-Mlf~"P(~a,N)d~alP(~a,N)dCYa 

(21) 

The reliability, R, of a material is defined as the 
probability that the material does not fracture. Ac- 
cording to the probability theory the reliability of the 
composite under the action of cyclic stress with ampli- 
tude (3" a for cycles between 0 and N is 

R(N) = 1 - Pf(N) 

= 1 - p(N, cf 
o 

~ - e x p [ - - M ~ f ~ p ( N ,  cf)dN l (22) 

and the reliability of the composite under the action of 
cyclic stress with amplitude between 0 and cra for 
N cycles is 

R(cy.) = 1 - Pf(~.) 
M' 

--~176176 .,) 

The above two equations are the distribution func- 
tions of fatigue life and fatigue strength of the com- 
posite, respectively. Now we can clearly see that the 
fracture probabilities and the reliabilities as functions 
of cycles and stress amplitude just represent two differ- 
ent aspects of the statistical nature of a composite 
under fatigue. Their forms are determined by the 
evolution behaviour of microcracks. 

In order to obtain the concrete forms of fracture 
probability and reliability, we have to calculate the 
two integrations I2p(N,  cf)dN and  ~o"p(CYa, N ) d o  a. 
We first write them in another form 

1 fx  ~ X2)  d~NN p(N, c)dN - re1/2 exp( - dN (24) 

1 fx p(~,, N)d (~  - re1/2 exp( - -  X 2)  dc~, d(y, 

where 

X - , -- BN (2DN) 1/2 
n -  2 c ~ c~r -1 

(25) 

(26) 

For the convenience of derivation, the following ap- 
proximate formula is used 

rot/2 e x p ( - X 2 ) d X  - aXS a = 0 . 8 ,  X >  1.5 

(27) 

3 4 3 6  

Substituting Equations 24 and 25 into Equations 16, 
17 and 20-23, we can derive the concrete forms of 
fracture probability and reliability. 

R(N) = t - P f ( N ) = e x p { - ( M ( N ) V ) \  2a 

C o-' c /- '  
(28) 

[ We(N) 2M(N)V 21/2A(cy, y),T1// 2 
a n - - 2  

, N3R(N) (29) 
c/- 

R ( ~ a )  = 1 - P f ( ~ , )  

= e x p {  - ( M ( N ) V ~  

(3o) 

Wf(o-a) _ 4nM(N)V[(2N)I/eAy"/2 
a n - 2  

X ( nl nl - ) ] 8 0 " a  8n-I  R(O'a) (31) 
\ co~-1 c7-1/_1 

Equations 28 and 30 are the two-parameter Weibull 
distribution functions of fatigue life and fatigue 
strength as follows [1 I] 

R(N) = e x p I - ( ~ ) o ]  

e(o'a) =- e x p [ - ( ( Y " ] v ]  

(32) 

(33) 

and 

where 13, 7 are the shape parameters and N,, cy r are the 
scale parameters. These parameters are usually 
determined experimentally, while in our theory the 
parameters are determined theoretically by the 
microbehaviour of crack evolution, applied cyclic 
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Figure 1 Fracture probability Pf(N), and reliability, R(N), for dif- 
ferent stress amplitudes: (a) % = 630 MPa, (b) ~, = 530 MPa. 



stress and the material characteristics. For the uni- 
directional, continuous E glass fibre/epoxy composite 
under bending experiment mentioned in Section 3, 
these functions are plotted in Figs l-4.  When 
CYmax = 700MPa  and the stress ratio R = 0.1, the 
shape and scale parameters of the distribution func- 
tion of fatigue life are calculated to be 4.00 and 37 607, 
while the experimental results are 3.34 and 40 100, 
respectively. The values of the parameters used in our 
calculation are: n = 9 ,  A- -  1.6x10 ~2, V = 3 . 8 x  
10-2m 3, Mo = 1 0 4 m  -3, ~ = 0 . 1 ,  c o = 4 x l 0 - 6 m ,  Y 
= 1.772, q = 1.0, cf = 10-3m. 

600 700 
O" a [ HPa) 

Figure 2 Fracture probability, Pdo.), and reliability, R(ch), for 
different cycles: (a) N = 5 x 104, (b) N = 104�9 
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Figure 3 Fracture probability density, Wf(N), for different stress 
amplitudes. 

6. S - N  re la t ion  
According to statistical mechanics, the average life of 
the composite is 

fo N f  = N W f ( N ) d N  

= R ( N ) d N  (34) 
0 

Substituting Equation 28 into the above equation and 
considering that M ( N )  changes slowly with N, we 
obtain 

[ 2 (: 1)1 3,, 
It can be seen that the fatigue life decreases with 
increasing stress amplitude, The size effect is also 
included in Equation 35. The calculated S - N  curve is 
shown in Fig. 5. 

Equation 35 can be rewritten in another form. 

(Ya Nm = b 

where m = 1/2n and 

b = { (  2a 

x , 2t/2(n - 2)AY" (36) 
C 1 C.f~- l 

which coincides with the empirical formula of the S - N  

relation for the  composite [1]. Because of lack of 
corresponding experimental data for comparison, this 
result can only serve as a prediction. 

7. Conc lus ion  
The non-equilibrium statistical fracture theory has 
been used to study the statistical nature of fatigue 
fracture of composites. The two-parameter Weibull 
distribution functions of fatigue life and fatigue 
strength for the composites are derived theoretically 
on a unified physical model. These functions may all 
be expressed by the same set of physical quantities as 
is used to express the nucleation and growth rates of 
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Figure 4 Fracture probability density, Wf(%) for different cycles. 
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Figure 5 Calculated S-N curve for the unidirectional E glass 
fibre/epoxy composite�9 
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microcracks. The theoretical results obtained not only 
explain some experimental data qualitatively but also 
give some predictions of the statistical properties of 
composites in fatigue. 

Because the mechanisms of nucleation and growth 
of microcracks are not well understood, the effects of 
material characteristics, stress state, crack orientation 
and environment on the crack growth rate, which are 
all included in the parameters A, n and Y, are not 
expressed analytically. Therefore, in order to obtain 
analytic relations between the statistical results de- 
rived in this paper and the various factors just men- 
tioned, further discussion of the mechanisms of nu- 
cleation and growth of fatigue microcracks is required. 
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